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SUMMARY

In this paper, the recently proposed local domain-free discretization (DFD) method is applied to simulate
incompressible flows around an oscillating circular cylinder. It is found that it is very easy for the local
DFD method to handle such moving boundary flow problems. This is because it does not need to move
the mesh, which is indeed needed in traditional methods. Numerical experiments show that the present
numerical results agree very well with the available data in the literature, and that the local DFD method
is an effective tool for the computation of moving boundary flow problems. Copyright q 2008 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Currently, one of big challenges in computational fluid dynamics is to simulate flows around
moving bodies in a complex domain. Basically, there are two ways to solve this problem. One
way is to use the fixed reference frame (inertial reference frame), whereas the other is to move the
reference frame with the moving body (accelerated reference frame). For the first way, continuous
re-meshing around the body [1] is needed, which could be very laborious. In practice, the second
way is usually adopted. In this case, the reference system is actually an accelerated reference
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system associated with the moving body. The disadvantage of this way is that it can be very
difficult to apply to problems where there are more than one bodies in the flow domain moving at
different speeds.

The recently proposed local domain-free discretization (DFD) method [2] is an efficient
discretization approach. In this method, the body-fitted grid generation and coordinate trans-
formation, which are necessary for the traditional numerical methods such as finite difference
(FD) and differential quadrature methods to solve problem with irregular geometry, are totally
avoided. The basic idea of DFD is inspired from the analytical method. That is, the discrete form
of given partial differential equations (PDEs) can be independent from the solution domain. Its
process may involve some points that may not be the mesh nodes and can be inside or outside
the solution domain. The functional values at those points can be evaluated by approximate forms
of solution along a line. In the local DFD method, all numerical work including discretization
of derivatives and approximate form of solution for interpolation/extrapolation is made locally
by using low-order polynomials, and any problem is solved in the Cartesian coordinate system.
Therefore, in this sense, it is a kind of Cartesian mesh solver. It can also combine with the stencil
adaptive mesh refinement technique [3] to effectively and accurately simulate the flow problem.

As a kind of Cartesian mesh solver, the local DFD method can easily handle the moving
boundary problem. The basic mesh is fixed. When the boundary is moved, only the distance
between the boundary nodes and the mesh points is changed, and this only affects the approximate
form of solution to evaluate functional values at mesh points near the boundary. This process can
greatly save the computational effort. In fact, in the local DFD method, all the mesh points can
be classified into three categories. Category 1 is the interior point where numerical discretization
of governing equations is needed. Category 2 is the outside point near the boundary where its
functional value is obtained from the approximate form of solution. Category 3 is the outside point
where nothing is needed to be done. When the embedded body is moved, the status (category)
of mesh points will be changed. If we make sure that the change of status of mesh points is not
jumped, that is, the status can only be changed from Category 1 to Category 2 or Category 2
to Category 3 and vice versa, the simulation of the moving boundary flow problem can be
done using exactly the same way as for the stationary flow problem. For example, when the
status is changed from Category 2 to Category 1, the points that are outside of the domain in
the previous step now become the interior points where numerical discretization of governing
equations needs the information of functional values at the previous step. Indeed, this information is
available in the previous step by the approximate form of solution. Therefore, no additional work is
needed.

To show the capability of the local DFD method for the simulation of the moving boundary
flow problems, the unsteady flow around a cylinder oscillating laterally (cross-flow) in a free
stream is considered. This kind of problem has been studied by many investigators such as Bishop
and Hassan [4], Koopman [5], Lu and Dalton [6] and Guilmineau and Queutey [7]. Tang and
Ingham [8, 9] solved this problem by using the FD scheme and the series expansion method.
Chang and Chern [10] applied the vortex method to simulate the flow around an impulsively
started circular cylinder. Dennis et al. [11] used the spectral-FD method to simulate the flow
induced by a rotationally oscillating and translating circular cylinder. Recently, Liu et al. [12]
solved this problem by using the spectral difference method. In general, for the moving boundary
flow problem, the above numerical methods need tedious coordinate transformation or moving
mesh technique. As will be shown in this work, the local DFD method can easily solve the
moving boundary flow problem without introducing any coordinate transformation. And numerical
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experiments show that the present numerical results agree very well with the available data in the
literature.

2. LOCAL DFD METHOD FOR THE MOVING BOUNDARY FLOW PROBLEM

The details of local DFD method can be found in the work of Shu and Wu [2]. In the following,
the procedure of the local DFD method to handle the moving boundary problem on the Cartesian
mesh is described.

As shown in Figure 1, the solid curve represents the location of the moving boundary at the
current step, whereas the dashed curve shows the location of the boundary in the next or the
previous step.

2.1. Local DFD method

Firstly, we give a brief description on the local DFD method. For simplicity, we assume that the
mesh is uniform, and the mesh spacing in both the x- and y-directions is the same. Suppose that
the solution of a problem is expressed by f (x, y) in the Cartesian coordinate system. As shown in
Figure 1, for the current step (the boundary is represented by solid curve), the mesh nodes inside
the physical domain (interior mesh nodes) are represented by the solid circles, whereas the mesh
nodes outside the domain are represented by open circles (such as node A2). The open squares
represent the points intersected by the perpendicular line to the boundary (through A2) and the
boundary curve and the mesh lines, such as points P1, P2, P3.

For the nodes far away from the boundary, such as node C0, the derivatives of PDEs can
be discretized directly by the central difference scheme without any difficulty. For numerical
discretization of derivatives at the nodes near the boundary such as B2, the local DFD method is
applied. According to the DFD method, the discrete form of PDEs can involve some nodes outside
the solution domain, and the functional values at these outside nodes such as node A2 can be

A2B2C2

Moving Boundary

B1C1 A1

C0 B0 A0

p1

p2

p3

Figure 1. Configuration of the DFD-Cartesian mesh method for the moving boundary problem.
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1226 Y. L. WU AND C. SHU

computed by using local low-order approximate form of solution. Therefore, the central difference
scheme on the uniform mesh can still be used by the local DFD method.

For example, the discrete form of the first- and second-order derivatives, respectively, in the
x-direction at the position B2 can be approximated by

�2 fB2
�x2

= 1

h2
[ f A2−2 fB2+ fC2]+o(h2) (1)

� fB2
�x

= 1

2h
[ f A2− fC2]+o(h2) (2)

where h is the mesh spacing on the uniform mesh in the x-direction, and o(h2) denotes the second
order of the accuracy.

To evaluate the function value at point A2, the local polynomial extrapolation is used by adopting
the variable values at the points P1, P2, P3 that are the intersection points of the line at the

normal direction to the boundary
⇀
n through A2 and the grid lines, as shown in Figure 1. In fact,

there are many choices to do extrapolation. For example, we can take the mesh nodes C2, B2,
and the intersection points of the x-coordinate line through A2 and the boundary curve, as done in
Reference [2]. The reason of using the points along the line at the normal direction to the boundary
⇀
n through A2 is to guarantee the unique function value at the mesh node for the discretization in
the next time step. Thus, the variable value of the mesh node outside of the domain A2 can be
obtained by extrapolation with the following three points extrapolation form:

f A2= (rA2−rP2)(rA2−rP3)

(rP1−rP2)(rP1−rP3)
fP1+ (rA2−rP3)(rA2−rP1)

(rP2−rP3)(rP2−rP1)
fP2+ (rA2−rP1)(rA2−rP2)

(rP3−rP1)(rP3−rP2)
fP3 (3)

where r is the distance from the certain point to mesh node A2, an example being rP2=√
(xP2−xA2)2+(yP2− yA2)2. The functional values at the points P2 and P3 can be calculated

directly by interpolation between nodes A1 and B1 (for point P2), nodes A0 and B0 (for point P3).
The functional value of the boundary point P1 is obtained from the boundary condition. The
details on the implementation of boundary conditions are described in Section 2.4.

2.2. Identifying category of mesh nodes

As indicated in the Introduction, in the application of local DFD method to the moving boundary
flow problem, all the mesh nodes can be classified into three categories. Category 1 (solid circle in
Figure 1) is the interior node where the governing equation should be discretized. Category 2 (open
circle in Figure 1) is the outside point near the boundary where its functional value is obtained
from the approximate form of solution. Category 3 (shade circle in Figure 1) is the outside point
where nothing is needed to be done. Thus, an important step is to identify the category of each
mesh node.

As shown in Reference [2], the mesh nodes with Categories 1 and 3 are identified firstly by
using the so-called ‘odd/even parity method’, which is inspired from the scan-line polygon fill
algorithm in computer graphics. The ‘odd/even parity method’ is illustrated in Figure 2. Initially,
all the mesh nodes are set to belong to Category 1. Suppose that there is a scan-line i1 in the
horizontal direction. This line has four intersection points with solid body (denoted by �), which
are represented as p1, p2, p3, p4. It was found that the odd index of intersection points such
as p1, p3 is always the point where the scan-line moves in the body, whereas the even index of
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APPLICATION OF LOCAL DFD METHOD 1227

Figure 2. Illustration of ‘odd/even parity method’.

the intersection points such as p2, p4 is the point where the scan-line moves out of the body.
Therefore, we can number the series of intersection points in forward sequence along the scan
direction and mark the mesh nodes between every odd/even parity as Category(i1, j1∼ j2)=3
and Category(i1, j4∼ j5)=3 as shown in Figure 2. We found that this method can determine the
Category 3 of mesh nodes in the whole domain very quickly.

After identifying Categories 1 and 3 mesh nodes, Category 2 of mesh nodes can be deter-
mined by finding the mesh nodes belonging to Category 3 but with Category 1 nodes as its
neighbors.

2.3. Local DFD method for the moving boundary flow problem

As shown in Figure 1, for the moving boundary problem, the position of the boundary in the
current step is represented by the solid curve, and the boundary in the last time step is represented
by the dashed curve. The mesh node B2 in the last time step is the node outside of the domain.
However, for the current time step, B2 becomes the node inside of the domain where numerical
discretization of governing equations is needed. For the unsteady flow problem, the function value
at B2 in the last time step is needed when the time derivative is discretized. This is not a difficulty
for the local DFD method where the functional value at B2 in the last time step has been known
from extrapolation.

If the dashed curve denotes the boundary in the next time step, the solid curve still denotes
the current time step. Then the mesh node B2 in the current time step is inside the solution
domain, but for the next time step, B2 will become the node outside of the domain. As numerical
discretization is only needed at the interior node, there is no need to store the solution at the
current time step. The value at B2 in the next time step can be approximated by the local DFD
method using Equation (3).

It is obvious that the local DFD method is very convenient for the moving boundary problem
as long as the distance that the boundary moves is not larger than one nodal space in one time
step. This is because we need the solution at some nodes that are the nodes outside of the domain
in the last time step but are the nodes inside of the domain at the current time step. In the local
DFD method, only for the outside nodes near the boundary within one nodal space, their function
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values are available from extrapolation. Therefore, the time step has to be small enough to make
sure that the moving body sweeps across less than one mesh spacing.

2.4. Boundary conditions on the moving boundary

Velocity boundary conditions. For the incompressible flow, the nonslip condition is applied. For
instance, if the body is static in the flow domain, the velocity at the node P1 is zero. For the
moving boundary problem, the velocity at P1 is the same as the solid boundary velocity.

Pressure boundary conditions. The surface pressure can be determined from the normal
momentum equation. For the incompressible flow, the gradient of the pressure along the normal
direction can be expressed as

�p
��

= 1

Re

�2u�

��2
−�

u2�
R

(4)

where R is the local curvature radius.
For details of implementing Equation (4) in the local DFD method, one can refer to the work

of Shu and Wu [2].
In the practical computation, we found that it is important to enforce the continuity equation on

the solid boundary. This is because the local DFD discretization is implemented on the nonstaggered
grid. Therefore, the continuity equation on the solid boundary is not automatically satisfied. When
this condition is not satisfied, it implies that the boundary is porous and there exists mass flux flow
in or flow out through the boundary. This situation means the change of the physical problem.
To avoid this situation, continuity equation should be accurately enforced on the nonporous solid
boundary, i.e. for the incompressible flow, we have

�(u·n)

�n
=0 (5)

where n is the normal direction to the boundary surface.

3. APPLICATION OF LOCAL DFD METHOD TO SIMULATE THE FLOW PAST
AN OSCILLATING CIRCULAR CYLINDER

The problem of a cylinder oscillating laterally (cross-flow) in a free stream is a well-known
moving boundary flow problem. There are various experimental and numerical investigations
available. In the work of Lu and Dalton [6] and Guilmineau and Queutey [7], a reference frame
fixed with the circular cylinder is used. Therefore, for a moving cylinder, it is an accelerated
reference system. We have indicated in the Introduction that this treatment can be hardly applied
to the problem in which there are more than one bodies inside the domain moving at different
speeds.

This difficulty can be overcome by the local DFD method. The local DFD method uses the fixed
reference frame, and the mesh is fixed. The internal objects are allowed to move freely through
the mesh. In the process of applying the local DFD method, no body-fitted mesh generation and
corresponding coordinate transformations are needed.
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3.1. Governing equations and boundary conditions

The unsteady incompressible Navier–Stokes equations in the Cartesian coordinate system are taken
as the governing equations for the problem, which are expressed as

�u
�x

+ �v

�y
=0 (6)

�u
�t

+u
�u
�x

+v
�u
�y

=−�p
�x

+ 1

Re
∇2u (7)

�v

�t
+u

�v

�x
+v

�v

�y
=−�p

�y
+ 1

Re
∇2v (8)

where u and v are the dimensionless velocity components along the x- and y-directions, respec-
tively. Re is the Reynolds number, p is the dimensionless pressure, and the Laplace operator
∇2 is

∇2= �2

�x2
+ �2

�y2

The circular cylinder is moved vertically with the speed vT :

vT = dye
dt

(9)

where ye= Ae sin(2� fet), with Ae and fe as the oscillating amplitude and frequency, respectively.
The boundary conditions of the problem are

(i) uniform flow at the in-flow boundary:

u=1

v=0
(10)

(ii) no slip on the surface of the cylinder:

u=0

v=0
(11)

(iii) uniform flow at infinity except for the downstream boundary:

u=1

v=0
(12)

(iv) natural (zero-gradient) boundary condition at the downstream boundary:

�u
�x

=0

�v

�x
=0

(13)
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3.2. Numerical discretization

It is found from the governing equations (6)–(8) that an independent equation for the pressure is
absent. To resolve this problem, the projection method [13] is employed in the present work. In
this paper, the time derivatives in Equations (7)–(8) are approximated by the three-step third-order
Runge–Kutta method. For a time increment �t= tn+1− tn , numerical discretization consists of the
following three steps:

Step 1:

un+1/3−un

�t/3
=−H(un)−G(pn)+ 1

Re
L(un) (14)

Step 2:

un+1/2−un

�t/2
=−H(un+1/3)−G(pn)+ 1

Re
L(un+1/3) (15)

Step 3:

u∗−un

�t
=−H(un+1/2)+ 1

Re
L(un+1/2) (16)

where H denotes the discrete advection operator, G is the discrete gradient operator, and L is the
discrete Laplacian operator. Superscripts n,n+1/2,n+1/3, and n+1 denote the time levels, and
u∗ is the intermediate velocity. The final velocity u at tn+1 is corrected by including the pressure
field, given as

un+1−u∗

�t
=−Gpn+1 (17)

Combining the continuity equation

Dun+1=0 (18)

and taking the divergence of Equation (17), the pressure Poisson equation is derived to correct the
velocity equation as

Lpn+1= 1

�t
(Du∗) (19)

where D is the divergence operator. Finally, the velocity un+1 is updated by the solution of pressure
equation (17):

un+1=u∗−�tG(pn+1) (20)

In the local DFD method, the second-order central difference scheme is applied in both the x- and
y-directions to approximate the spatial derivatives, including all the discrete operators. Suppose
that at a mesh node (xi , y j ), if one or more of nodes (i−1, j), (i+1, j), (i, j−1), (i, j+1)
(i.e. the neighboring nodes of mesh node (xi , y j )) are not located in the physical domain, then the
functional values at those nodes are evaluated by using Equation (3).
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3.3. Numerical results and discussions

The computational domain is shown in Figure 3, where a is the radius of the cylinder. An initial
uniform Cartesian mesh with the introduction of stencil refinement technique [3] (54 002 nodes
in total) is used (see Figure 4). Note that the nodes are distributed to cover the area where the
oscillating cylinder moves across. To make sure that the moving distance of each node in one time
step is less than nodal distance, the time interval should be small enough.

3.3.1. Fixed cylinder case. This case has been studied by many researchers [6, 7, 14, 15]. The
simulation of the two-dimensional flow past a fixed cylinder at the Reynolds number of Re=185

∞U

Figure 3. Computational domain for simulation of the flow around a circular cylinder.

Figure 4. Node distribution for the problem.
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Figure 5. The time evolution of lift and drag coefficients for Re=185.

Table I. Numerical and experimental values of Cd, CLr.m.s. and St at Re=185 (fixed cylinder case).

Work Cd CLr.m.s. St

Lu and Dalton [6] 1.31 0.422 0.195
Guilmineau and Queutey [7] 1.287 0.443 0.195
Present 1.255 0.463 0.195

is used as a test case to compare with other numerical and experimental results for the validation
of the present method.

Figure 5 shows the time histories of the lift and drag coefficients for nonoscillating cylinder at
Re=185. The average drag coefficient, Cd, the r.m.s. value of the lift coefficient, and the Strouhal
number, St , are reported in Table I. They are compared with other experimental and numerical
results in the literature. The agreement is quite good. It means that the local DFD method with
stencil refinement technique works very well for the fixed cylinder case. The following section
will show its performance for the moving boundary problem, i.e. the flow past the oscillating
cylinder.

3.3.2. Oscillating cylinder case. Flow past a transversely oscillating circular cylinder is a good
benchmark case to validate the computational techniques for the moving boundary problem.
This problem has been investigated by many researchers, and the associated synchronization
phenomenon is observed in the wake of the cylinder and refers to the situation where the frequency
of vortex shedding in the wake synchronizes with the frequency of an imposed perturbation. This
kind of synchronization occurs around fe/ f0∼1, where fe is the excitation frequency and f0 is
the vortex-shedding frequency from the stationary cylinder.
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In this work, we have performed calculations for Re=185, Ae/D=0.2, where D is the diameter
of the cylinder. The range of fe/ f0=1.1,1.12,1.2 is considered. Each of these simulations is
integrated in time for about 150 nondimensional time units, which is sufficient to reach a stable
state.

At first, we conduct the grid-independent and time-step-independent study on the personal
computer (Intel P4, 2.4GHz processor, 512MB of RAM). For the grid-independent study, three
grids are taken. Each grid is generated from a background mesh with local refinement level by
level [2]. The finest mesh is placed near the solid boundary. For all the three grids, the background
mesh is the same, that is 161×121. Grid 1 takes 6 levels of local mesh refinement with 36 155
mesh nodes in total, whereas Grid 2 adopts 8 levels of local mesh refinement with 54 002 mesh
nodes in total. Grid 3 has 10 levels of local mesh refinement with 87 557 mesh nodes in total. The
time average of drag coefficient, the r.m.s. value of the lift coefficient, and the Strouhal number, St ,
at the excitation frequency of fe/ f0=1.1 for the three grids are shown in Table II. It can be seen
from Table II that with increase in mesh nodes, the difference of numerical results becomes smaller
and smaller, and Grid 2 can provide accurate results. Thus, in the following computations, Grid 2
is adopted. For the time-step-independent study, two time steps are used. They are h=0.0025 and
0.005. Numerical results of these two time steps are also shown in Table II. It is found that their
differences are within 2%. Therefore, in the following simulations, we take h as 0.005. Table II
also shows the results of Guilmineau and Queutey [7] for comparison. Obviously, the present
results agree very well with those of Guilmineau and Queutey [7].

Figures 6–8 display the drag and lift coefficients for different values of fe/ f0. The results of
Guilmineau and Queutey [7] are also shown in the figures for comparison. Obviously, the present
results and those of Guilmineau and Queutey [7] show the same flow pattern. It is found that the
drag and lift coefficients exhibit regular signs of the influence of a higher harmonic wave. As the
excitation frequency increases, the beating frequency decreases.

Figure 9(a) shows the instantaneous streamlines when the oscillating cylinder is at the extreme
upper position for the case fe/ f0=1.1. The figure shows two saddle points in the form of inter-
secting streamlines. The centers of the closed streamlines suggest the existence of vorticity concen-
trations in those regions. This concentration of vorticity involves the entire near wake and results
in a tighter vortex structure. The corresponding contours of vorticity are given in Figure 9(b). The
upper vortex has been diminished in strength to the extent that the lower vortex has become the
dominant vortex and the upper vortex has rolled up tightly behind the cylinder.

Table II. Comparison of Cd, CLr.m.s. and St at Re=185, Ae/D=0.2,
fe/ f0=1.1 (oscillating cylinder case).

Cd CLr.m.s. St

Present method with grid-independent study Grid 1 1.412 0.747 0.240
Grid 2 1.484 0.875 0.214
Grid 3 1.454 0.854 0.214

Present method with time-step-independent study (Grid 2) �t=0.005 1.484 0.875 0.214
�t=0.0025 1.466 0.865 0.214

Guilmineau and Queutey [7] (mesh=240×200) 1.420 0.897 0.214

Grid 1: background mesh 161×121 with 6 levels of mesh refinement and 36 155 mesh nodes in total. Grid 2:
background mesh 161×121 with 8 levels of mesh refinement and 54 002 mesh nodes in total. Grid 3: background
mesh 161×121 with 10 levels of mesh refinement and 87 557 mesh nodes in total.
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Figure 6. Drag and lift coefficients versus time for Re=185 and Ae/D=0.2 for fe/ f0=1.10: (a) present
study and (b) Guilmineau and Queutey [7].
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Figure 7. Drag and lift coefficients versus time for Re=185 and Ae/D=0.2 for fe/ f0=1.12: (a) present
study and (b) Guilmineau and Queutey [7].
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Figure 8. Drag and lift coefficients versus time for Re=185 and Ae/D=0.2 for fe/ f0=1.20: (a) present
study and (b) Guilmineau and Queutey [7].
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(a)

(b)

Figure 9. Instantaneous streamlines and vorticity contours for Re=185 and Ae/D=0.2, fe/ f0=1.10.
The location of the cylinder is at its extreme upper position: (a) streamlines and (b) vorticity contours.

4. CONCLUSIONS

The advantages of the local DFD method for the simulation of the moving boundary flow problems
are demonstrated in this paper. In the local DFD method, the mesh generation and numerical
discretization over the mesh nodes are totally unrelated to the internal bodies in the domain. The
moving boundary condition only affects the calculation of functional values at the nodes outside
of the domain via the extrapolation process. The application of the present method to simulation
of flows past an oscillating cylinder shows good agreement with the numerical flow predictions
in the literature. In the present work, the local DFD method is applied with mesh refinement
technique. It is expected that for the high Reynolds number case, more mesh refinement near the
solid boundary is needed to capture the thin boundary layer, and the upwind differencing may be
required to enhance the numerical stability.
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